The Cumulative Effect of Unemployment on Risks for Acute Myocardial Infarction

Matthew E. Dupre, PhD; Linda K. George, PhD; Guangya Liu, PhD; Eric D. Peterson, MD, MPH

Background: Employment instability is a major source of strain affecting an increasing number of adults in the United States. Little is known about the cumulative effect of multiple job losses and unemployment on the risks for acute myocardial infarction (AMI).

Methods: We investigated the associations between different dimensions of unemployment and the risks for AMI in US adults in a prospective cohort study of adults (N = 13,451) aged 51 to 75 years in the Health and Retirement Study with biennial follow-up interviews from 1992 to 2010. Unadjusted rates of age-specific AMI were used to demonstrate observed differences by employment status, cumulative number of job losses, and cumulative time unemployed. Cox proportional hazards models were used to examine the multivariate effects of cumulative work histories on AMI while adjusting for sociodemographic background and confounding risk factors.

Results: The median age of the study cohort was 62 years, and 1061 AMI events (7.9%) occurred during the 165,169 person-years of observation. Among the sample, 14.0% of subjects were unemployed at baseline, 69.7% had 1 or more cumulative job losses, and 35.1% had spent time unemployed. Unadjusted plots showed that age-specific rates of AMI differed significantly for each dimension of work history. Multivariate models showed that AMI risks were significantly higher among the unemployed (hazard ratio, 1.35 [95% CI, 1.10-1.66]) and that risks increased incrementally from 1 job loss (1.22 [1.04-1.42]) to 4 or more cumulative job losses (1.63 [1.29-2.07]) compared with no job loss. Risks for AMI were particularly elevated within the first year of unemployment (hazard ratio, 1.27 [95% CI, 1.01-1.60]) but not thereafter. Results were robust after adjustments for multiple clinical, socioeconomic, and behavioral risk factors.

Conclusions: Unemployment status, multiple job losses, and short periods without work are all significant risk factors for acute cardiovascular events.

Published online November 19, 2012.
doi:10.1001/2013.jama.447

More than 1 million Americans experienced a first or a recurrent acute myocardial infarction (AMI) in 2010, and more than half died as a result.\(^1\)\(^,\)\(^2\) Although major risk factors for coronary heart disease have been well documented (eg, inactivity, obesity, hypertension),\(^3\)\(^,\)\(^4\) the effect of social stressors on AMI are still poorly understood. For more than a century, studies have shown that the lack of employment is a direct or indirect risk factor for poor health.\(^5\)\(^,\)\(^6\)\(^,\)\(^7\) Unemployment has now been linked to a myriad of risk factors and deficient resources that may contribute to elevated rates of cardiovascular disease.\(^8\)\(^,\)\(^9\)\(^,\)\(^10\)\(^,\)\(^11\)\(^,\)\(^12\) To date, however, the evidence has been based almost entirely on cross-sectional associations that ignore lifetime variability in employment, with its immediate and long-term consequences for cardiovascular health.\(^13\)\(^,\)\(^14\)\(^,\)\(^15\)

According to the US Department of Labor, most adults will have had multiple jobs by middle age, and most will have had 1 or more periods of unemployment.\(^16\)\(^,\)\(^17\)\(^,\)\(^18\)\(^,\)\(^19\)

See Invited Commentary at end of article

Although recent research has shown that job loss at older ages substantially increased risks of AMI,\(^20\) the longitudinal evidence linking unemployment to cardiovascular events has been limited and inconclusive.\(^21\)\(^,\)\(^22\) The purpose of the present study was to extend these findings and provide the first prospective investigation of the short- and long-term effects of multiple dimensions on risks for AMI. We used data from a nationally representa-
The complex coding of study measures was facilitated by using RAND HRS data files provided by the RAND Center for the Study of Aging and funded by the National Institute on Aging and the Social Security Administration.34 Time-varying measures for each dimension of employment history were categorized as follows: employment status (employed or unemployed, excluding retirement), cumulative number of job losses (0, 1, 2, 3, or 4), and cumulative time unemployed (0, >0 to 1, 2, or ≥4 years). Job losses and their respective time-varying durations were defined by the age-specific ending and beginning dates of employment statuses. Retirement status (without active employment) also was included as a time-varying control (yes or no), and retirement status, transitions, and duration were excluded from the respective work-history measures. Adjustments for persons out of the labor force were not significant, and the variable was dropped from the analysis. Persons who were not employed and not retired were considered unemployed in this study. Preliminary analyses showed that bivariate correlations were relatively low among employment history variables (coefficients were 0.01 to 0.33, with a mean correlation of <0.10).

Multivariate models were adjusted for background sociodemographic factors, including age at study entry, sex, race/ethnicity (non-Hispanic white, non-Hispanic black, or Hispanic), marital status (married or not married), and geographic region (South or other). Several previously identified cardiovascular risks also were examined as possible factors contributing to the associations and included educational level (<high school education or ≥high school education), household income (lowest quartile or upper quartiles), health insurance coverage from any source (yes or no), current smoking status (yes or no), alcohol use (0, 1-2, or ≥3 drinks per day), vigorous physical exercise (<3 or ≥3 times per week), regular cholesterol screenings (within 24 months, yes or no), body mass index (calculated as weight in kilograms divided by height in meters squared; 23.0-29.9 [overweight] or ≥30.0 [obese]), hypertension (yes or no), diabetes mellitus (yes or no), any limitations in activities of daily living (yes or no), and number of depressive symptoms measured by the 8-item Center for Epidemiologic Studies Depression Scale. Preliminary analyses also included variables to adjust for the sampling of cohorts, number of children, timing of first employment, and primary occupational status; however, results were not significant and the variables were dropped from the final models. With the exception of baseline age, sex, and race/ethnicity, all covariates were time varying and time lagged (observed at the previous year) in the prospective analyses to establish temporal order when estimating the effects of the covariates on subsequent AMI, as previously shown.36-37

OUTCOME

Incidence of AMI was the main outcome for analysis. Study participants were asked whether they had “a heart attack or myocardial infarction” at each interview and in what year (and month after 1994) it occurred. Although subjects’ reports of AMI are less precise than clinical data, studies have shown considerable consistency between diagnostic reports of health events from survey respondents and those from medical evaluations.38-40 The short time between interviews (approximately 24 months) and the life-threatening nature of these events also minimized the potential for recall bias. For persons who experienced AMI, the outcome corresponds to the age of the event (calculated from the dates of birth and the event). For persons not experiencing AMI, the outcome corresponds to the age when respondents were last observed to be free of disease. Forty-one adults reported an AMI before baseline and were excluded. Three hundred twenty-nine subjects (2.4%) died during...
ing the study and were censored at their age of death. Of the 1061 AMIs, 92 (8.7%) were reported at ages that were difficult to distinguish temporally from the time of job loss. However, by design, the time-varying measures of job loss were time lagged to ignore job losses that were reported concurrently with AMI exposure to unemployment and AMI events. The number of tied events relative to the number at risk was low (≤1%), and partial likelihood estimation was nearly identical using Breslow (reported herein) and Efron approximations.

The first set of multivariate models examined the unadjusted associations for each of the 3 groups of work-history measures and AMI and adjusted associations that included age, sex, race/ethnicity, marital status, retirement, and geographic region. The second set of multivariate analyses examined the associations for all the work-history variables and AMI while adjusting for age, sex, race/ethnicity, marital status, retirement, and region. A final model adjusted for the confounding effects of additional cardiovascular risk factors. Variance inflation factors, tolerance levels, and condition values were used to confirm the absence of multicollinearity in the fitted models. Interactions also were examined by sex and race/ethnicity.
Characteristics of the study participants are presented in Table 1. Adults who had an AMI were more likely to be older, male, non-Hispanic, and living in the South than those without an event. Those who had low levels of education and income, had no health insurance, smoked, abstained from alcohol, failed to exercise, were overweight or obese, had been diagnosed with hypertension or diabetes mellitus, were disabled in their activities of daily living, or had depressive symptoms also had substantially higher levels of AMI than their counterparts. Rates of AMI were significantly higher in study participants who were unemployed and retired compared with employed participants (P < .001). Distributions of AMI were not significantly different for the cumulative number of job losses (P = .31), and there was an inverse trend between cumulative time unemployed and AMI (P = .007).

Unadjusted plots shown in Figure 1 demonstrate significant differences (P < .001) in age-specific rates of AMI for each time-varying dimension of job history. Figure 2 illustrates the unadjusted and sociodemographically adjusted HRs for the 3 work-history components related to AMI. Results showed that each major dimension of employment instability was significantly associated with incident AMI after adjusting for differences in age, race/ethnicity, marital status, retirement, and geographic region.

Table 2 reports the sociodemographically and fully adjusted associations between all the work-history variables and AMI. The initial model showed that unemployment status, cumulative number of job losses, and cumulative time unemployed were all associated with AMI independent of the other work-history dimensions. Model adjustments for sociodemographic, socioeconomic, behavioral, psychological, and clinical risk factors did not attenuate these effects. The fully adjusted model showed that unemployment status (HR, 1.35 [95% CI, 1.10-1.66]) and 1 (1.22 [1.04-1.42]), 2 (1.27 [1.05-1.54]), 3 (1.52 [1.22-1.90]), and 4 or more cumulative job losses (1.63 [1.29-2.07]) were independently associated with incident AMI. Risks of AMI were significantly elevated within the first year of being out of work (HR, 1.27 [95% CI, 1.01-1.60]) but not after longer periods of unemployment. The multivariate findings were significant and comparable to other major risk factors in the model, such as smoking (HR, 1.44 [95% CI, 1.24-1.68]), diabetes mellitus (1.51 [1.30-1.75]), and hypertension (1.62 [1.42-1.86]).

Although the magnitudes of the HRs were generally greater among men, Hispanics, and non-Hispanic blacks than among women and non-Hispanic whites, none of the interaction terms for sex and race/ethnicity were statistically significant.

OBJECTIVE

Our study is the first, to our knowledge, to examine the cumulative effect of multiple dimensions of unemployment on the risks for AMI. Results demonstrated that several features of one’s past and present employment increased risks for a cardiovascular event. Although the risks for AMI were most significant in the first year after job loss, unemployment status, cumulative number of job losses, and cumulative time unemployed were each independently associated with increased risk for AMI. Disruptions in employment remained significant after adjustments for established cardiovascular risk factors. We found that the elevated risks associated with multiple job

Multivariate models were adjusted for the complex HRS sampling design to produce unbiased variance estimates. Tests of interactions with analysis time and tests of Schoenfeld residuals using robust variance-covariance matrix estimation indicated that the proportional hazards assumption was not violated. Analyses were conducted using commercially available software.43
losses were of the magnitude of other traditional risk factors, such as smoking, diabetes mellitus, and hypertension. In the context of the current US economy and projected increases in job instability and unemployment among workers, additional studies should investigate the mechanisms contributing to work-related disparities in AMI to identify viable targets for successful interventions.

The present study demonstrates that cumulative exposure to unemployment increased risks for AMI and that the associations were not accounted for by conventional social, behavioral, psychological, or clinical factors. Overall, our results remained robust after adjustments for more than a dozen confounding factors. In addition, we found no evidence that differences in occupational status or time of entry in the workforce (because of educational level, children, and/or health status) were related to the incidence of AMI when the 3 dimensions of employment history were taken into account. These findings were consistent in men and women and major race/ethnic groups, and they corroborate recent evidence linking involuntary job loss and AMI in older adults.

The findings for the longitudinal association between employment instability and AMI complement and extend our understanding of lifetime exposure to cardiovascular risks. The association between job loss and AMI is analogous to risks attributable to smoking. Although current smoking status is a known risk factor for cardiovascular events, long-term patterns of tobacco use (ie, pack-years) are more powerful predictors of risk. Likewise, the onset of hypertension or type 2 diabetes mellitus does not increase the risk for AMI; instead, the strain that these illnesses exact on the cardiovascular system over time increases the risk. Our findings for employment history largely mirror these protracted and cumulative associations.

Eliminating or lessening exposure to acquired risk factors undoubtedly reduces their toll on health outcomes, although lifetime risks may persist. Smoking cessation, for example, reduces the risk for AMI; however, it does not eliminate the effect of total pack-years of tobacco use. Likewise, reemployment may only in part diminish the negative effects of past disruptions and cumulative losses. An important area for future research will be to identify the extent to which reducing long-term exposure to risk factors lowers the odds of AMI and other health outcomes. A related line of inquiry should investigate whether unemployment earlier in adulthood can be ameliorated by biomedical, psychological, and social resources acquired later in life.

Major strengths of this study included the use of panel data from a large representative sample of middle-aged and older US adults, the use of retrospective histories and prospective data spanning almost 20 years, and multivariate hazards models that used time-varying covariates to estimate risks for AMI. Nonetheless, the study was...
Results from our large prospective cohort study demonstrated the powerful effect of one's lifetime employment history and cumulative job losses on risks for a major cardiovascular event. As rates of job instability continue to increase and unemployment reaches 30-year highs after recent contractions to the US economy, the cardiovascular costs of repeated job losses in younger cohorts are yet unknown. Although employment background is not amenable to medical intervention, knowledge about employment status, number of job losses, and the amount of time unemployed may help to identify individuals at elevated risk for AMI. Additional studies are needed to assess how such information can be used to target and aggressively treat vulnerable segments of the population.

Accepted for Publication: July 9, 2012. Published Online: November 19, 2012. doi:10.1001/jamainternmed.447

Correspondence: Matthew E. Dupre, PhD, Duke Clinical Research Institute, Duke University Medical Center, PO Box 17969, Durham, NC 27715 (matthew.dupre@duke.edu).

Author Contributions: Dr Dupre had full access to the data in the study and takes responsibility for the accuracy of the data analysis. Study concept and design: Dupre and George. Acquisition of data: Dupre and Peterson. Analysis and interpretation of data: Dupre, George, Liu, and Peterson. Drafting of the manuscript: Dupre. Critical revision of the manuscript for important intellectual content: Dupre, George, Liu, and Peterson. Statistical analysis: Dupre, Liu, and Peterson. Administrative, technical, or material support: George. Supervision: Dupre and Peterson.

Conflict of Interest Disclosures: None reported.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect those of Duke University.

REFERENCES

Evolution of Research on the Effect of Unemployment on Acute Myocardial Infarction Risk

Up and colleagues have analyzed data from the Health and Retirement Study to explore whether job losses that occur toward the end of workers’ careers are associated with an elevated risk for acute myocardial infarction (AMI) and whether repeated exposure to job loss exacerbates this risk. Several decades of research in this field, provoked by a phenomenon introduced to the US labor market with the advent of international competition in capital-intensive industries in the late 1970s, have demonstrated a fairly robust association of worker's careers with an elevated risk for acute myocardial infarction (AMI) and whether repeated exposure to job loss exacerbates this risk. The findings presented by Dupre et al—suggest that job loss raises the risk for AMI, and that risk accumulates with repeated exposure—extend this literature in the domain of physical health.

I will discuss what I believe are 3 distinguishing attributes of the study by Dupre et al. These attributes are the temporal ordering of job loss and AMI. The study by Dupre et al is one of few to explore an outcome (in this case, AMI) that can be ensured to occur after the job loss exposure, in which case appropriate temporal ordering can be drawn. AMI is an outcome with a known temporal ordering, making this study unique in its ability to investigate the effect of job loss on AMI.

Explorations of these questions, however limited, should mark the beginning of the next period of research.

TEMPORAL ORDERING OF JOB LOSS AND AMI

The study by Dupre et al is one of few to explore an outcome (in this case, AMI) that can be ensured to occur after the job loss exposure, in which case appropriate temporal ordering can be drawn. AMI is an outcome with a known temporal ordering, making this study unique in its ability to investigate the effect of job loss on AMI.